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Department of Physics, Nanjing University, Nanjing, People’s Republic of China 

Received 20 July 1982 

Abstract. For any Lie group G, a so called intrinsic Lie group d is introduced, G and d 
being commutative and anti-isomorphic. It is shown that in the parameter space of a Lie 
group G, the corresponding intrinsic Lie group d is just the second parameter group. The 
general relations between the first and second parameter groups are derived in a simple way. 

For the group S 0 ( 3 ) ,  there is the intrinsic Lie group m ( 3 ) .  The infinitesimal 
generators of m(3) are precisely the components of the angular momentum in the 
intrinsic coordinate system. Therefore the intrinsic Lie group m(3) provides an appropri- 
ate mathematical formalism for the description of collective rotations of nuclei about their 
intrinsic axes. 

1. Introduction 

Since the pioneering works of Rainwater (1950) and Bohr (1952) on nuclear collective 
rotations and vibrations, the study of these phenomena, both macroscopically and 
microscopically, became a subject of extreme interest (Bohr and Mottelson 1953, 
Elliott 1958a, b, Eisenberg and Greiner 1970, Arima and Iachello 1976, 1978a, b, 
and Moshinsky 1980). Recently, extensive efforts have been devoted to separating 
the collective degrees of freedom from the intrinsic degrees of freedom in the Hamil- 
tonian of an A-body system with the aim to derive a collective Hamiltonian microscopi- 
cally, with notable success (Vanagas 1977, 1980, Gulshani and Rowe 1976, Weaver 
et a1 1976, and Gulshani 1981). 

However, in this paper, rather than investigating the dynamic theory of nuclear 
rotations, we restrict ourselves to some kinematic aspects of nuclear collective rotations 
about the external as well as the intrinsic axes. As pointed out by Bohr and Mottelson 
(1969), the transformation of operators between the external (laboratory) and the 
intrinsic (moving or body-fixed) coordinate systems involves special features as a result 
of the fact that the orientation angles (a, p, y )  of the intrinsic frame are to be regarded 
as dynamical variables. One of these special features is the well known fact that the 
intrinsic components J1,2,3 of total angular momentum commute with the external 
components J,,,,, and the commutation relations of the intrinsic components among 
themselves are similar to those of J,,,,,, but involve an opposite sign. 

Moreover, in Elliott’s SU(3) rotation model (Elliott 1958a, b), or the recent 
interacting boson model with SU(6) r>SU(3) limit (Arima and Iachello 1978a), a 
quantum number K, the third component of total angular momentum in the intrinsic 
frame, is introduced to label the different rotation bands. Elliott pointed out that the 
intrinsic quantum number K is a rather unusual one in that the states of the same 
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1348 J-Q Chen, F Wang and M-J Gao 

( h k ) L  but different K are not orthogonal. Thus the rotaticn of nuclei about the 
intrinsic axes does involve some puzzling features. 

Louck and Galbraith (1976) discussed the transformation between the laboratory 
system and intrinsic system. They demonstrated that the group of the classical spherical 
rigid rotator is a group of transformations, designated as O3 * O3 ( 0 3  is the three- 
dimensional rotation-inversion group), of two three-dimensional spaces. These two 
groups are anti-isomorphic, and their generators commute but have the same J 2 .  
Similar results have also been obtained by Judd (1975) in the context of diatomic 
molecule rotations. This type of group structure was extended into other groups by 
Louck and Biedenharn (1970). 

By introducing three kinds of complete set of commuting operators (csco), we 
set up a new approach to the representation theory of finite groups (Chen et a1 
1977a, b, c, 1978, 1979, and Chen and Gao 1982). The first kind of csco (CSCO-I) 

of a finite group is the analogy of the Casimir operators in Lie groups. It turns out 
that the csco-I consists of few class operators of the group and is a csco in its class 
space. Suppose G 3 G(1) 3 G(2) 3 .  . . is a canonical subgroup chain of G, and C and 
C ( n )  are the csco-I of G and G ( n )  respectively. The set of operators 

( l a  ( C ;  C ( s ) )  = ( C ;  C(1),  C(2) ,  9 f . I  
is called the csco-11 of G, which is a csco in any irreducible space of G. 

For any non-abelian group G, a so called intrinsic group d is introduced (Chen et 
a1 1977a, Chen and Gao 1982). and G are commutative and anti-isomorphic (or 
isomorphicas well, since if and G are anti-isomorphic, then d and G-' are isomorphic, 
where G-' is the same group as G but with all the elements R being renamed as 
R-') .  Corresponding to the group chain G 3 G(1)  3 G(2) 2. . . , we have the intrinsic 
group chain d 3 d(1) 3 c ( 2 )  3.  . . and the csco-11 of d, 

It is proved that the csco-I of G and d are equal but not those of G ( n )  and d(n), i.e. 

(IC) c = c, 
The set of operators 

C ( n  1 f a n ) ,  n = 1 , 2 , .  . . . 

(C, C ( s ) ,  C'(s)j = (C, C i l ) ,  C(2) ,  . . . a l ) ,  C(2) ,  . . .), ( 1 4  
is a csco in the group space and is termed the csco-111 of G. It is shown that the 
primitive characters, the G 3 G(1) 3 G(2) 3 .  . . irreducible basis and irreducible matrix 
elements can be easily found by solving the eigenvectors of the CSCO-I, 11 and 111 

respectively. This technique, the so called eigenfunction method, proves to be very 
powerful in the actual calculation of characters, the Clebsch-Gordan coefficients, 
isoscalar factors etc (Chen and Gao 1981, 1982, Chen er a1 1983a, b). 

The close relationship between the new approach to finite groups and Racah's 
approach to Lie groups (Racah 1951) is apparent as far as the csco-I and csco-11 are 
concerned. What is not yet clear is about and c(s). We need to find out the 
counterparts of the intrinsic group c and the operator set c(s). We first extend the 
concept of the intrinsic group to the Lie group case and identify the intrinsic Lie 
group with the second parameter group (Racah 1951 and Eisenhart 1933). In this 
way we have a unified representation theory for both finite and Lie groups based on 
the csco approach. After doing this, we applied the theory of the intrinsic group to 
the special case of the rotation group SO(3) and showed that the intrinsic Lie group 
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- 
SO(3) provides an appropriate mathematical frame for describing the rotation of 
nuclei about the intrinsic axes (in passing, this is the reason why G is termed the 
intrinsic group). The conclusions reached by Louck and Galbraith (1976), Louck and 
Biedenharn (1970) and Bohr and Mottelson (1969) etc emerge naturally in this 
physically oriented approach. 

2. Intrinsic Lie group 

We use R ( a ) = R ( a ' ,  U * .  . . a ' )  to denote an element of a Lie group G of 
rank r, a ', a* . . . a' being r parameters. For any element R ( b )  of the group G, similar 
to the case of finite groups (Chen et a1 1977a), one can define a corresponding 
operator R ( b )  in the group space L ,  by the following equation 

B(b)R(a)  = R ( a ) R ( b )  for any R (a )  EL, .  (2a )  

It is fairly easy to prove that the set of operators R ( b )  forms a group, the intrinsic 

(i) The group c commutes with G, 
Lie group e, which has the following properties?. 

[R (a ) ,  R ( b ) ]  = 0. ( 2 b )  
(ii) The groups c and G are anti-isomorphic, i.e. if 

(a)R (6) = R (c), (3a )  

R ( b ) R ( a )  = R ( c ) .  (3b) 

then 

It is seen from the definition equation (2a)  that for any Abelian group G the 
coincides with the group G. In the parameter space, the infinitesimal intrinsic group 

elements of the groups G and G can be written as 

R ( S a )  = 1 +SaPA,, R(Sa)  = 1 +SaPB,, (4) 
where A ,  and B, represent infinitesimal operators of G and G in the parameter space, 
respectively. From the definition of the Lie group, we have 

R ( S a ) R ( a ) = R ( a  +da) ,  a' +da"  =q"(a,  sa), a = 1 , 2  ,..., r. ( 5 )  

From (4) and ( 5 )  one gets 

Similarly, according to definition (2a),  one obtains 

~ ( S a ) R ( a ) = R ( a ) R ( S a ) = R ( a  +da) ,  

a" +da'  = pm(Sa, a ) ,  

B$ ( a )  = CLz(a)(a/da")R (a 1, 
B, =cl;(a)(a/aa"), @; (a )  = (aq"(b, a)/abP)(,=o. 

(9) 

f Boerner (1963) called G the inverted regular regular representation. 
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Comparing (6) and (9) with Racah's equations (15) and (16) (Racah 1951) we 
recognise that in the parameter space the infinitesimal operators of the groups G and c are just the infinitesimal operators of the first and second parameter groups, 
respectively. 

In physical applications one usually works with the representation of the groups 
G and c in the space of 'functions on the group manifold', in which the operators of 
the group elements are defined, by analogy with the case of finite groups, by 

where U (R,) = U ( a )  is a function on the group manifold. It is to be noted that 

RCRbu (R,) = u[(RcRb)-'R,] = U (Rb'RL'R,) 

# Rcu (R b'R,) = U (R,'R b'R,). ( l o b )  

Let Rb and in ( l o a )  and (11) be infinitesimal elements, 

where we use X, and x,, to denote the infinitesimal operators of the groups G and e, respectively. With the help of (10)-(12), using the same procedure which led to 
(6) and (9), one gets expressions for the operators X, and X, when they act on the 
function on the group manifold. 

X , ( U )  = -p.,"(a)(d/aa") = -A,(u) ,  r l , ( a )  = -/.ip"(a)(a/aa") = -B,(a). (13) 

It is seen that the infinitesimal operators X,(a) and X,(a)  in the space of the 
function on the group manifold are identical to the infinitesimal operators A,  and B,  
in the parameter space, respectively, except for a trivial difference in sign which results 
from the fact that in ( l o a )  and (1 1) we used the definition R b U  (R,) = U (Rb'R,) instead 
of R b U  (R,) = U (RJ?,), etc. 

In future we mainly concern ourselves with X,(a) and x,(a), and for convenience 
we shall just call them operators of the first and second parameter groups. 

The irreducible matrix elements D)s;:(R,) =D)s;:(a) of the group may be thought 
of as a function on the group manifold. Substituting D t : ( a )  for u ( a )  in (10) and 
( l l ) ,  and using (12) and (13), we have 

with 
(mlX,It)'"'= D:; (X,). 

In Chen et a1 ( 1 9 7 7 ~ )  it was proved that 
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Alternatively, by letting U ( & )  in (loa) and (11) be 
- - I ( ” )  

U ( R a ) = D m k  (Ra)=D%c*(a), 

one obtains 

3. Relations between first and second parameter groups 

Because of properties (26) and (3), one gets for the infinitesimal operators 

[X,,  %I = 0, (19) 

[X i ,  x, 1 = C“Xm, [XT, XJ = --c;,zu, ~ , ( ~ = 1 , 2  , . . . ,  r. (20) 

According to definition (2a) ,  the relation between the element R(6)  of the intrinsic 
group and the element R (6) of the group G is seen to be 

R ( 6 )  = R ( a ) R ( b ) R - ’ ( a ) .  (21a) 

It should be emphasised that equation (2a)  is the defining equation for the operator 
R ( b ) ,  rather than an identity equation. Therefore, it is not permissible to multiply 
equation (2a)  from the right by another group element R(c ) ,  i.e. 

R (6)R (a  )R ( c )  # R (a)R (6)R ( c ) .  

R (6)R (a)R ( c )  = R ( b ) ( R  (a  )R ( c ) )  = R (a)R (c)R (6). 

Instead, R (a)R ( c )  must be considered as a new element of G, 

Analogously, equation (21a) is also not an identity; it only shows that R(b) is 
equivalent to R (a)R (b)R-’ (a)  when acting on R (a),  while acting on another element 
R ( c ) ,  it will be equivalent to R(c)R(b)R-’(c).  In other words, the element R ( a )  in 
equation (21a) is a variable one rather than a fixed one; it changes according to the 
‘basis’ on which R(b) acts. 

By using equations (11) and (lob),  it is easy to show that equation (21a) holds 
when acting on any function u ( a )  on the group manifold 

R ( b ) u ( a )  =R(a)R(b )R- ’ (a )u (u ) .  (216) 
Equation (216) is an identity in the sense that it holds for any parameters a and 6. 
Letting the parameter b be infinitesimal, inserting (12) into (21b), and remembering 
that acting on the function u ( a ) ,  X,, +X,,(a), and X,, +x,,(u), we get 

r l , ( a ) u ( a )  =R(a)X , (a )R- ’ (a )u (a ) .  (21c) 

X, , (a)  =R(a)X,(a)R-’(a). 

Since U ( a )  is an arbitrary function on the group manifold, it follows that 

Equation (22a) gives the relations between the infinitesimal operators of the first and 
second parameter groups. It is worth noting that (22a) is an identity relation. 
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To get a geometric interpretation of (22a), let the r infinitesimal operators X ,  be 
thought of as the r components of an abstract vector X in a fixed coordinate system 
of an r-dimensional vector space, and Xb be the new components of the vector X in 
another fixed system rotated through a given 'angle' a0 with respect to the original 
one. Obviously we have 

XL = R (ao)XR-'(ao). ( 2 3 ~ )  

We know that the X ,  carry the adjoint representation 9 ' " O )  of the Lie group G, thus 

Xb = 1 9:;'(ao)Xu. 
U 

By comparing (22a) with (23u), we obtain 

The inverse of (226) is 

X u ( a )  = c 9::': (a )X , (a ) .  
P 

It must be stressed that although (22) and (23) are similar in appearance, actually 
they are drastically different. In (23) the parameter a0 is a constant and (236) shows 
that Xb and X ,  are members of the same Lie algebra. Another way of saying this is 
that the Lie algebras {XL} and {X,}  are isomorphic but not commutative. On the 
contrary, we know that X, (a )  and X, (a )  belong to the Lie algebras of the first and 
second parameter groups respectively, which are anti-isomorphic but commutative. 
The reason for the 'strange' behaviour of X,(a)  is that the parameter a in (22) is a 
dynamic variable instead of a constant. Although X , ( a )  is a linear combination of 
X , ( a )  as shown in (22b), %,(a) and & ( a )  are not members of the same Lie algebra, 
since the linear combination coefficients 9;;' ( a )  are a-dependent functions. 

As mentioned in the introduction, the intrinsic components J1,2,3 of angular 
momentum J have similar behaviour. This itself suggests that we might regard the 
differential operators X,,(a) as the explicit form of the components X, of the vector 
X in an intrinsic coordinate system of the r-dimensional vector space, the orientation 
'angle' a of which is a dynamical variable. Consequently, without specifying the action 
space, (22a) can be rewritten as 

( 2 2 4  
which gives the general relation between the infinitesimal operators of the Lie group 
G and its intrinsic group G. Hence we see that (23) represents a transformation from 
a fixed frame to another fixed frame, while (22) represents a transformation from a 
fixed frame to a moving (or intrinsic) frame. 

Finally, we want to point out that the relation (226) between the infinitesimal 
operators of the first and second parameter groups is a generalisation of Eisenhart's 
equation (14.10) (Eisenhart 1933). Letting the group element R (ao)  in equation (23) 
be an infinitesimal one 

2, = R (a)X$ -l(a), 

R(a0) = 1 +Sa&Y,, (24) 
one gets 
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c:, = 9;b",.'(XT). 

Assuming a to be regular parameters (Eisenhart 1933), for small a, 
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(26) 

(27) 
1 

2! R ( a ) = e x p ( - a T X T ) = l - a T x ~ + - - a T a " X ~ T . - .  , , . 

From (26) and (27) we have 

(28) 

Equations (226) and (28) are precisely Eisenhart's equations (14.10) and (14.13), 

4. The csco-I, 11 and 111 of a Lie group 

For a Lie group G of rank I and order r, the CSCO-I is defined as 

c = (IdXp), . 9 . Il(Xp)), (29) 

where I, (X,) are the Casimir invariants of G. The csco-I of the intrinsic Lie group e 
is 

c = (I&), . * . I1(Xp)) .  (30) 

The conclusion obtained for finite groups that the csco-I of G and G are equal 
also applies to the Lie group. To show this one only needs to prove that a Lie group 
G and its intrinsic group 

i = 1, 2, . . . 1. (31) 

have the same Casimir invariants; i.e. 

11 (xp 1 = Ii ( Z p  1 9 

Proof. According to the definition of the Casimir invariants, I , (X , )  commute with any 
element of G 

(32) 
Besides, we know that I, (X,)  are polynomials of the infinitesimal operators X,. Using 
equation (22d) we thus have 

(33) 

R (a  )I, (X,)R-'(a 1 = I ,  CX, 1. 

R (a ) I ,  ( X p ) R  - I (  a ) = I, (X, ). 

Therefore (31)  holds. 

Suppose G 3 G(1) 3 G(2) I>. . . is a canonical subgroup chain, and 

C ( n )  = (1 i : ) (Xp) ,  . . . I Y ) ( X P ) )  (34) 

is the csco-I of the subgroup G(n) with rank ln, then the csco-I of the subgroup G ( n )  
of the intrinsic group G is given by 

(35) 

Obviously c ( n )  commutes with but is not equal to C ( n ) ,  since c ( n )  commutes with 
the whole group G, while C ( n )  commutes only with the subgroup G(n). 

C ( n )  = (I::' ( X p ) ,  . . . I?)  (X,)). 
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The csco-11 and 111 are given by ( l a )  and (Id). Theorems 1-6 given by Chen et 
a1 (1977a) for finite groups are still valid for compact Lie groups. Similarly, the 
eigenvalues of the csco-11 can be used to label irreducible basis vectors, while the 
eigenvalues of the intrinsic operator set c(s) = (c(l), c ( 2 ) ,  . . .) can be used to 
distinguish between repeated irreducible representations of G. 

It is thus seen that for the representations of both finite groups and compact Lie 
groups we can have a unified treatment based on the commuting operator approach 
of quantum mechanics, which is more acceptable to physicists. 

5. Irreducible tensor of the intrinsic Lie group 

In this section, the ordinary tensor algebra of a Lie group G will be extended to the 
intrinsic Lie group c, The ordinary irreducible tensor is defined as 

(36) 

where D‘”’(X,) stands for the irreducible matrix. It is to be noted that here the 
irreducible matrix D(”O’ of the adjoint representation is not necessarily identical with 
9 ‘ ” O )  of (25). For a given D(”O), only through a proper linear combination of X, can 
we combine them into the vo-irreducible tensor T‘,“”’. Henceforth it is assumed that 
the infinitesimal operators X,, have been chosen to be identical with Tro’. With this 
provision, all the equations (22)-(28) remain valid when the matrix 9(yo) is replaced 
by D(”O’. 

By analogy with the fact that X,, is the vo-irreducible tensor of the group G, it is 
natural to define x,, as the uo-irreducible tensor of the intrinsic Lie group c. From 
(20) and (25) we have 

[X,,, T k ’ ]  = 1 Dzjm(X,)Tg? 
m 

[X?, X,] = - 1 D (XT)XU. ( 3 7 )  
U 

Therefore a general definition of the v-irreducible tensor F.‘,.’ of the intrinsic group 
is 

k ’  

Comparing (18a) with (36), and (146) with ( 3 8 a ) ,  we know that Dk:*(a) is the mth 
component of the vth irreducible tensor for the group G, while D‘,“:(a) is the kth 
component of the vth irreducible tensor for the intrinsic group G :  

D!$ ( a )  = TL),  D z : ( a )  = TP). ( 3 8 b )  
From ( 3 8 b )  it is seen that there are h, independent tensor operators 

with the same irrep label (v), which are enumerated by assigning 
the intrinsic quantum k to each of them. This is consistent with a theorem proved 
by Louck and Biedenharn (1970). The theorem asserts that the number of the linearly 
independent irreducible tensor operators with the irrep label ( v )  is equal to the 
dimension h ,  of the irrep (v) of G. In their notation 

9 
~ ( ” ’ 1  ~ ( ” ’ 2  T(U)hv , . . .  
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Similarly, we have h ,  linearly independent irreducible tensors of the intrinsic group 
C? with the irrep label (v), 

DzL(a)= ( v )  . (:) 
It is thus seen that the same conclusions are reached from the viewpoint of the 

intrinsic group. 
Applying (36)-(38), (14), (17) and (18) to the special case of the SO(3) group, we 

can easily reproduce all the results given by Bohr and Mottelson (1969, Section 1A-6). 

6. Intrinsic group and intrinsic state of SO(3) 

We shall use the SO(3) group as an example to illustrate the physical meaning of the 
first and second parameter groups as well as the intrinsic group. 

6.1. The intrinsic group ST(3)  

By choosing the Euler angles a, p, y as group parameters, the elements of SO(3) can 
be written 

R (a, p, y)  = exp(-id,)  exp(-ipJy) exp(-iyJ,). (39a 1 
On account of the anti-isomorphic property of the intrinsic group m ( 3 )  with respect 
to S0(3),  the elements of m(3) are of the form 

(39b) 

The infinitesimal operatorsJ,, J,, J ,  form the basis of the adjoint (J = 1) representa- 
tion of the group SO(3) in which the representative of the group element R(a,  p, y)  
is Bd‘””’(a, p, y) ;  the transposition of 9‘”O’(a, p, y)  is 

R(a ,  p, y)  = exp(-iy.J,) exp(-ip.J,,) exp(-ia.J,). 

8(”0)(a, P, Y 1 = M ( a ,  0, Y 1 

1 cos a cos p cos y -sin a sin y, 
= -cos a cos p sin y -sin a cos y, 

sin a cos p cos y +cos a sin y, 
-sin a cos /3 sin y + cos a cos y, 

-sin p cos y 
sin p sin y . 

cos a sin p sin a sin p cos p 
(40a) 

1 
The relation between the infinitesimal operators Jx,y,z of the intrinsic group m ( 3 )  

and Jx,y,r of the group SO(3) follows from equation (226): 

We now proceed to calculate the infinitesimal operators of the first parameter 
group by employing equation (13). Consider the product of two successive rotations 

R(a3,63,  ~ 3 )  =R(a2,  P 2 ,  ~ 2 ) R ( a 1 ,  Pi,  YI) .  

As the combination laws for the parameters a, p, y are not easy to obtain explicitly, 
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we first give the combination laws for the parameters of the group SU(2) 

(41) 

In terms of the relations between the parameters a, p, y of SO(3) and the parameters 
ao, a l ,  a2,  a3 of SU(2) (Smirnov 1951) 

1 1 1 1 
a0 = cos zp1 cos z(a1+ Yl), 

a2=sinzp1 s inz(yl-al) ,  

one then gets implicitly the combination laws for the parameters a, p, y. From 
equations (13),  (41) and (42) we obtain 

a l  =sin zpl cos 3(y1 - a l ) ,  

a3 =cos t p l  sin ;(a1 + yl), 
1 1 (42) 

J, = i-l(a/aa), ( 4 3 ~ )  
J, =i-'[-sina cot p(a/aa)+cosa(d /ap)+(s ina/s inp) (a /ay)] .  (43b) 

So far we have only got the differential operators Jy and J,, since X ,  and X ,  correspond 
to the same J,. The third operator J, can be obtained by using the commutator 

Comparing equation (43) with Eisenberg's equation (39) (see Eisenberg and Greiner 
1970) we know that, for S0(3) ,  the infinitesimal operators of the first parameter group 
are nothing else but the well known differential operators J,, J,, J,, the components 
of the angular momentum in the fixed frame, when acting on functions on the group 
manifold. 

Similarly, from equations (13), (41) and (42) one gets the explicit form of the 
infinitesimal operators of the intrinsic group =(3), i.e. the infinitesimal operators 
of the second parameter group 

J, = i-'[cos y cot p (alar) -sin y(a/ap) - (cos y/sin P) (a /aa  )I = -J, (a y), 

7, = i-'[-sin y cot p(a/ay)+cos y(a/ap)+(sin y/sin P ) ( a / a a ) ]  = J,(a -y), (44) 
J, = i-'(a/ay) = J,(a -y).  

It can be easily verified that equations (43) and (44) are consistent with equation 
(40). 

Comparing equation (44) with Eisenberg's equation (29) it is seen that the 
infinitesimal operators J,,.,,, of the intrinsic group m(3) are just the components of 
the angular momentum J1,2 ,3  in the intrinsic frame. We thus conclude that the 
components o f  angular momentum in the intrinsic frame J1, J2,  J3 constitute the generators 
of the intrinsic group s 0 ( 3 ) ,  just as the components of angular momentum in the 
fixed frame, J,, J,, J, constitute the generators of SO(3). 

6.2. Intrinsic state 

Equation (2a) only defines the action of the group element E ( b )  in the group space 
of G. The action of the intrinsic group element R ( a )  in the configuration space is 
yet to be specified. It leads to the definition of the so called 'intrinsic state'. If there 
is a set of wavefunctions { Q a ( X ) }  in the configuration space which span a reducible 
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representation of G, then one may pick up any one of them, O o ( X )  say, and define 
the action of any intrinsic group element R ( a )  on this chosen state O d X )  to be 
identical to the action of the group element R ( a )  of G 

for all R ( a )  E G (45) 

and a 0 ( X )  is called the intrinsic state of the group G. 
Equations (2a)  and (45) suffice to define the action of the intrinsic group elements 

on all other wavefunctions O , ( X )  which can be obtained from O o ( X )  by acting with 
group element R ( a )  of G 

For the group m(3) (S0(3 ) ) ,  R ( a ) ( R ( u ) )  is a rotation operator about the moving 
(fixed) axes of the intrinsic (external) frame, a being the Euler angles (a, p, y ) .  In 
the case when the intrinsic axes coincide with the external ones, the wavefunction in the 
fixed frame, namely the wavefunction @o(X) in the configuration space, is just our 
intrinsic state, and the rotations E ( a )  about the intrinsic axes are identical to the 
rotations R ( a )  about the external axes. That is what equation (45) means. To further 
elucidate the physical meaning of the intrinsic state, we take the collective rotation 
of a deformed nucleus as an example. An HF state of a nucleus with an open shell 
is in general nonspherical, say oblate; we choose the symmetry axes of the oblate 
spheroid as the intrinsic axes. Denote the HF state whose symmetry axes coincide with 
the external ones (i.e. the coordinate axes of  the fixed frame) by O o ( X )  and the others 
by @ , ( X )  which can be generated from Q 0 ( X )  by acting with a rotation operator R ( a )  
(see equation (46)), the parameters a being the orientation angles of the intrinsic 
frame. From the set { Q a ( X ) } ,  we choose Q0(X)  as the intrinsic state of SO(3). On 
account of the definition of the function Q 0 ( X ) ,  (45) obviously holds. 

It was pointed out [Chen 1983) that among the states { @ , ( X ) } ,  in principle we are 
free to choose any one as the intrinsic state. For example we may choose Oa0(X) = 
R (ao)Q0(X) as the new intrinsic state whose symmetry axes have been rotated by an 
angle a. from the external ones (see the schematic diagram below). According to the 
definition of (451, the intrinsic state is a state whose intrinsic axes coincide with the 
external ones, so it means that the newly chosen intrinsic axes no longer coincidz with 

I \ 
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the symmetry axes. Thus the arbitrariness in the choice of the intrinsic state is a 
reflection of the arbitrariness in the choice of intrinsic axes. These intrinsic states in 
general do not have a definite angular momentum but they do have a definite z 
component of the angular momentum, K say. From ( 4 5 )  one has 

J,@bK’(Xj = Jz@,bK’(X) = K @ f ’ ( X j .  (47) 

This implies that the z component of angular momentum of the HF state @,(X)  
whose symmetry axes coincide with the external axes is just the third component of 
the angular momentum in the intrinsic frame. 

6.3. csco-III of group SO(3) 

By a straightforward generalisation of the results in Chen et a1 (1978, 1983a, b), we 
know that (J2,  J,, Jz) constitute the csco-111 of the group SO(3) whose eigenoperator 
P!$K is the generalised projection operator of SO(3). 

The action of Pg’“ on the intrinsic state @bK’(X) yields a state with definite angular 
momentum JM, if it does not vanish. Now consider the question of the intrinsic 
component of the total angular momentum. It was pointed out (Chen er a1 1983a, b) 
that not every intrinsic group element has a definite action on the states in the 
configuration space (unless they form a regular representation of the group), only the 
class operators of certain intrinsic subgroups have definite actions. The method of 
finding these class operators was given in Chen et a1 (1983a, b), namely, first find out 
all the operators which leave @bK’(X) unchanged. For @bK’(X) of (47), this operator 
is seen to be R:(cp) = exp[-icp(J, - K ) ]  

R:(q,@,bK’(X) = @dK’(X). 

This means that @,bK’(X) is an axial symmetry state. Therefore for any state 
R(a ,  p, y)@bK’(Xj only the intrinsic group element R,(cp) = exp(-gzcp), and thus the 
operator Jz, have definite meaning. From (48j, (19), (47) 

J&’K’@,bK’(X) = (Jzp(p’)@,bK’(X) = K‘pg’K’@bK’(X) 

= pjdriK’Jz@LK’(X) = Kpc)K’@bK’(X) ,  

Therefore 
pgK’@,bK’(X) = & , q r $ K ,  

( 5 0 )  
9 5 ) K = s [  D ~ ~ ( a P y ) R ( a p y j @ , b K ’ ( X ) s i n p  d a  d p  dy. 

Equations (50) show that for axial symmetry states, the third component of the total 
angular momentum in the intrinsic frame is determined entirely by the third component 
of the angular momentum of the intrinsic state. In other words, there are no collective 
rotations about the symmetry axis (Bohr and Mottelson 1969). Thus the projected 
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states obey the simultaneous eigenequation 

J 2  J ( J  + 1) j; j 9 m  = j ; j 9K)K(x). (51) 

In Elliott's SU(3) model, the so called leading state ~ ( ( A ~ ) E A v )  is chosen as the 
intrinsic state with E = 2A + p,  A = {p ,  v = p ; 4 does not have a definite K value but 
contains a series of K values: K = p,  p - 2, . . . 1 or 0. Using the projection operator 
one can likewise pick out the JMK component Pk'?K4( (Ap)~Av) .  

Another point worth mentioning is the fact that the projected states 9$IK(X) are 
not orthogonal in the intrinsic quantum number K unless O0 is a basis of the regular 
representation (for example @ & I K =  DLK(cx, p, y )  are orthogonal in K). The non- 
orthogonality in the intrinsic quantum number is a general phenomenon. However, 
for finite groups, the difficulty of non-orthogonality in the intrinsic quantum number 
can be ultimately overcome (Chen and Gao 1982). 

At last we return to the physical meaning of the intrinsic irreducible tensor. 
From (146), (52), it can be shown that if the irreducible tensor T',"' of the group 

SO(3) is a scalar under rotations about the intrinsic axes 

[Jb, T k ' ]  = 0,  

then the tensor 

is an intrinsic irreducible tensor Fg' .  TZ' is nothing else but the operator T',"' 
expressed in the intrinsic frame. Some important operators do satisfy the condition 
(52): for example, the angular momentum and the multipole operators. 

7. Summary 

The first and second parameter groups have been known for a long time. However, 
on account of their being rather abstract, little attention has been paid to them. 
Nothing was mentioned about their use in physical problems. It was considered to 
be a mathematical trick of not much use. So it is rather surprising to find that in 
nuclear physics we have come across the realisation of these abstract ideas many times 
without being able to recognise them. In fact, for the group S 0 ( 3 ) ,  the infinitesimal 
operators of the first (second) parameter group are just the differential operators of 
J,, J,, J ,  ( f x ,  T,, y,), the components of angular momentum in the fixed (intrinsic) frame, 
acting on 'functions on the group'. The relationship between these two kinds of 
parameter groups emerges naturally as soon as their physical implications are made 
clear. 

We abstract the concept of the intrinsic group from the concrete physical problem 
and then use it again in treating the problem of the collective rotation of nuclei about 
the intrinsic axes. Some puzzling aspects of the problem now become clear. So it 
may be said that we have tailored a mathematical formalism for describing nuclear 
rotation about the intrinsic axes. 

As is well known, there is a gap between the representation theories of the finite 
group and Lie group (Gamba 1969, Killingbeck 1970, 1973). It is not unusual for a 
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person familiar with one of them to be ignorant of the other. The new approach to 
finite group representation with its natural extension, presented here, to the compact 
Lie group, provides a simple and unified theory for both of them. Besides the advantage 
in practical calculation, the new approach is also valuable in methodology since one 
can learn the representation theory of the Lie group (rather formidable for novices) 
from the much easier one of the finite group. 
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